.\

iject oriented

programmmg done‘lght

——

N [

-~ :\~—t~.‘
=
‘3R

‘ {

.;:‘.'

—
—
— - - -
- P
» Sy "-0.,.
-.—-M - —

.or what can we Iearn from the Smalltalk-80 herltage =

0 . \.\ 'y v.‘

.-m/'

-t

o
Dmltry,IVIatveev | 2020

lagazine, 1981-08

Contents

* [ntro

* Smalltalk’s place in history

* Understanding the language

* Understanding the environment
* Live demo

* Smalltalk today

* Resources on Smalltalk

Intro

“I invented the term ‘object
oriented’, and C++ was not
what | had in mind”

- Dr. Alan Kay

Picture credit: Blue Book

Smalltalk’s place in history

Steve). @ Apple
Xerox PARC Macintosh
| 1979 1984

Xerox Alto Smalltalk-76 Smalltalk-80 Xerox Star
1973 1976

Smalltalk’s place in history, continued

Apple
Objective C
1984

Self: JIT
David Ungar
1987

Smalltalk-80
1980

NeXT
OpenStep
1994

Strongtalk
Gilad Bracha
1993

IBM
VisualAge
1993

Java
HotSpot VM
Lark Bak
~1997

Eclipse
Foundation
2001

Java
Language
Spec
(Bracha)

JVM
Spec
(Bracha)

Google
V8 JS Engine
Lars Bak

Smalltalk’s place in history, continued again

extreme 4 JICNE o : ,
yrogramm!ng TONGU e P ne [EST-DRIVEN
explained Explored DEVELOPMENT

EMBRACE CHANGE

SUnit .
Smalllgtglgk-79 Smalllgt;:)k-so Kent Beck Kent Beck Kent Beck II\BII:anlf:ts;cI:
1989 1996 1999 2001

Refactoring
Browser S

John Brant Rerscrorme
M VC O O P S LA IMPROVING THE DESIGN

F oF ExistiNG CopE
Trygve Ralph S0

(Johnson)
Reenskaug Johnson 1994

“Refactoring”
Fowler, Brant

1979 199x

Smalltalk history in one slide

e ~1969: Xerox sets a goal to envision a “workplace of the future”

e 1970: Alan Kay joins Xerox Palo Alto Research Parc (PARC)

e 1972: “Dynabook: a personal computer for children of all ages”

e 1972: Dan Ingalls joins Xerox PARC »
« 1972-80: Smalltalk-72, -74, -76, -79 - ‘) =
e 1980-83: Smalltalk-80 (Release) QT"I
e 1983-..: Commercial Smalltalk packages Tt
* 1996: Sun releases Java

e 1996-..: Decline in market share, focus on FOSS
e 199x — 200x: Squeak (led by the original authors), 200x — now: Pharo (fork)

e 2003: ACM Turing Award to Alan Kay for pioneering OOP & “fundamental contributions
to personal computing”

System Browserl

Collections-Sequerd -
Collections-Text

Collections-Stream
Collections=Suppor|
Graphics-Primitive
Graphics=Display
Graphics-Media

Interval
Collections=Arraye] LinkedList
MappedCollection
OrderedCollection
SortedCollection

accessing
copying
adding
removing
enumerating
private

=

collect
do:andBetweenDao:

T3
promoteFirstSuchT LLEERL 4
reverse ELLEE yqq
reverseDo; 2N b

select:|Form Editor

tnewCollection

User Interrup(l

newCollection + self species new
self do: [teach | newCollection add: (aBlock value: each)]

Graphics-Paths — |-
linstancel| class
collect: aBlock
‘Evalnate aBlock

Paragraph>>characterBlockAtPoint:

Paragraph>>mouseSelect:to:

CodeController(ParagraphEditor)>>processRedButton

CodeController(ParagraphEditor)>>proc
CodeController{ParagraphEditor)>>controlActivi
CodeController{Controller)>>controlL

sMo.

Buttons
¥

controlActivity

self scrollBarContainsCursor

ifTrue:
[self scroll]
itFalse

[self processkKeybo) [J¢Robson>SF>*,

salf processl\‘lousofi [Filene]<Robson>SF
f G

blueButt
scrollBar
marker
savedArd
paragrap
startBlog

@537 corner:

creenform.st

[Filena]<Robson>SF>ScreenFormChanges.st
[FileneJ<Robson>SF>WordGraphics.form

Rectangle fromUser origin

ScreenfForm setFullPageWidth,

(Form readFrom: 'FilledSkate.form’) edit

Image provided by PARC Incorporated.

VelCOTrie 10 STalTHR
Sk XM November 24

XEROX G aming Researh

USET SCreenextent: 640@808 ab: 0@0.

SystemOrganization - e s s s
'Fernel Classes' ClassDefinition
'Murmbers' Class Organization.
‘Bastc Data Structures’ :
'Sets and Dictionatrigs' 31l nitialization
‘Graphical Objects' 'Schedulat!
'Text Objects ‘Editing'

i i 'l 3

'Serike format

+# sysFonrWindow i)
i displamad of TOW CoTL CLGTgE T
CISY MARY IO Rl]

Regular Bold inaiic
FHT CTEHE F HATIY —inglic Bold

uset scheduls: (4 Bald—inalic—timdetinead

alrostyle: Defad

fontnitmber: 3

at: (OriginCu

[user waith

T, (i it £ e e
Tont, ATl size O] LEAL OTLYWILETE

Undetlined
i inatic—Urdertingd

Creamin Cream 12
Timeskeman? TimesRomanil TimesRomanll
Helveticals
*F0 chadne & e [Bachald

yourfont < FontMHippoio - oL[B&ﬁEd)]fntsnsuvovepcr‘fuwxw]f

™K 177 88| pathio -Twt+ A== 23 F OO0 OAOPO® LKA EISERE

VW ECTIECECIPIE F SR LUV X M L)X
AAQ IO L= FE@ AN K> N-HK % H

XEROX 8010 Star Information System

Star provides integrated tect and graphics, A varie ty of type sizes and styles may be used,

DE&‘

Description Price
Peas 50,39
Eeans $0.50

Wark

7
= -
f{usetul e e e LU
=) ersphis [Es o Do |
= i nt fids
I . <
i i
= Tiny Bl]
lcons

G

§ Sample
! doaem
G ent

:
: b
i

—[+]

S
G

e

i

Thesis £
- =

e
e
i
i

AME sz VERSIGN OF
[} 0 Ternpaensy tive page 1 Page 13:29 ::
[A Copyrightand abstract 2Pages 16:12 e
[} B Frentmstier 4Pages 22:08 -
[chapter 1 11 Pages P L R
e

O chapter2 15 Pages 2249 e =
g c:‘:i::rj 2' ;:::: - ‘:’ :; e e El

h 5 3084 2
D1 chapters 15 Pages 15:45 § . w0 |
O thapterd 7 Pages 8:02 - 1
[chapter? 13 Pages 22:10 i [Converterf !
D) heferences IPages 21:58 -
0 styles 5Pages 142
= — —

{

[ermrmEnn (G 6 2 e

XEROX
6085 Workstation
User-latertass Design

it wasy o compers toxt and eraghias, ts
e fiSag, pria aing

weTktatan, L
o denga.

Birmap diupiny - Brh
e G mapped B

A snnu peiatiag devioe et alewy
ckly minet axy text. graphie of

Ser aad Pelat

Al fanetins A viebie 16 Be awr o
Tayorard of en e wereen The wme daes filing
wwd il by

Py
—————

Sherter Production Times

Bwperionse a1 Gnx ol prewimpe

RaAtian can be waed b6 DN thix

O -
..y |
%2 | 158
[33
I
% o
0 »
3 »

e e e
Activiy under the o and the

ATy

107 [P

1988 T3 & Lotur Sar e fresnom JO]8
oo —— N ||
198 name

SAND

190
198

et o]
T ———

Fekstatien wsage perentage|
e -y

€985 wsery ase |
enpant
precem isel

B

Text and Graphies

T replace typesettang, the 408

of 12 paiat text

axt

z = a0
Bk

”

]
=) | 8
el wasran |
Coive et

Pi

cture credit: Blue Book

Understanding the language

-~
e d _,,-"J/
rd el
- e
.- e
A
e
Py
//

Quiz: how complex your programming language is?

try/catch inheritance
class do{}while()
If(){}else

& (bw) * (ptr) & (addr)

virtual struct{} + +umon{} SFINAE
ADL C 1f(){}else if(){}

typedef

casts while() * (arith)
(*fcn) for(;;)

rvalue multiple inheritance

throw

template<> RAII

Smalltalk concepts

1. Everything is Object
2. Objects communicate only by sending each other Messages

Smalltalk concepts: Objects (Literals)

123 a SmallInteger

l6rff a SmallInteger (255)
‘Hello world’ a String
#HelloWorld a Symbol

#(1 2 3) an Array

Smalltalk concepts: Messages

2 squared =>4 Unary message
‘hello’, ‘world’ => ‘helloworld’ Binary message
2 raisedTo: 3 => 8 Keyword message
Transcript Cascading

show: 'hello’; - Reyword

show: 'world’; - Reyword

cr. - unary

Smalltalk concepts: Messages — Quiz!

2 + 2 * 2

The correct answer is 8. There’s no arithmetic precedence for
operators (as there is no operators except :=and 7).

Message precedence order is defined as unary > binary > keyword.
2 gets #+: 2, results in 4, 4 gets #%*: 2, results in 8.

Smalltalk concepts: Variables & Block closures

[:x | x + 1] => a BlockClosure (object)
| a b | => declare two variables

a := 3. => assignment (literal)

b := [:x | x + 1]. => assignment (lambda)

b value: a. => Send keyword message value:
4

Smalltalk concepts: That’s it!

* Now you know the syntax.

e But... What about...

Conditionals?..
Loops?..

Classes?..
Overloading?..
Exception handling?..

e ...There’s no special syntax for those.
e ...Everything is an object, and objects are sending messages!

Smalltalk concepts: Conditionals

(a>2) 1. a#>2->aBoolean (true or false)
ifTrue: [a + 1] 1. true:aTrue
, 2. false: a False
ifFalse: [a — 1] _
2. a Boolean #ifTrue:lfFalse
1. True #ifTrue:ifFalse, OR
2. False #ifTrue:ifFalse
Boolean
HifTrue-ifFalse: 3. True class: evaluates true block

4. False class: evaluates false block
! 5. Achievement unlocked: “IF without IF”

True False

#ifTrue:ifFalse: | #ifTrue:ifFalse:

Smalltalk concepts: Collections

Class is the receiver
Everything is object!

: A
nings := OrderedCollection]new. F=======

|
t
ines'add: 1. bee——m
thingsjadd: 1. ;=== ===== s
t
t

nings add: 2.
nings add: ‘Smalltalk - silal”’.

Smalltalk concepts: Collections

things do: [:each | Transcript show: each; cr]

x - O Playground
Page

| things |

things := OrderedCollection new.

things add: 1.

things add: 2.

things add: 'Smalltalk - sila!'.

things do: [:each | Transcript show: each; cr]

x - 0O Transcript

1
2
Smalltalk - sila!

Smalltalk concepts: Collections

things collect: [:each | each class]

x - 0O Playground

Page

| things |

things := OrderedCollection new.
things add: 1.

things add: 2.

things add: 'Smalltalk - sila!’'.
things collect: [:each | each class]

an OrderedCollection(Smallinteger Smallinteger WideString)

Smalltalk concepts: loops (not)

. ¢ & & ® §® §® % B ® B °® § B 0 B B B °® 0B B B B N B |nteger>>timesRepeat:aB|0ck

110 timesRepeat:|[Transcript show: ‘Cool isnt it?’; space].

Trans O ipd =g oo, me mm s o o o o s s s o o s o o s s Integer >> to: aNumber do: aBlock

|-1-’c;:-1@-cE>T|[:i | Transcript show: i; space].

L-------

Transcript cr.

(1 to: le)lgozl[:i | Transcript show: i squared; space].
mm mll

Page > B -

3 timesRepeat: [Transcript show: 'Cool isnt it?'; space].
Transcript cr.

1 to: 10 do: [:1 | Transcript show: i; space].
Transcript cr.

(1 to: 10) do: [:i | Transcript show: i squared; space].

Integer >> to: aNumber. Creates Interval

x -0 Transcript v

112345678916

Cool 1isnt it? Cool 1isnt it? Cool isnt it?
l49162536496481100|

Smalltalk concepts: Classes

Object subclass: #Point Number subclass: #Fraction
instanceVariableNames: ‘x y’ instanceVariableNames: ‘numerator
denominator’

classVariableNames: ¢’

i « €
package: ‘Kernel-BasicObjects’ classVariableNames:

package: ‘Kernel-Numbers'

Inheritance (subclassing) is not a declaration.
It is @ message. A message which is sent.
Sent in the runtime.

Smalltalk class hierarchy example

/'LBehavior class

ClassDescription class

i

Class class

Behavior

I

ClassDescription

Metaclass class
__ p»{Objectclass

o N

—— Color class »»> Metaclass
Color 73
? - TranslucentColor class

TranslucentColor

f

translucentBlue instance-of —pppp

Picture credit: Pharo By Example

z"fﬂh‘

&

Understanding the enwronmeo@ il

Picture credit: Blue Book "

Smalltalk as an environment

* Smalltalk is not only a language, it is also an environment
* Smalltalk is more an environment than a language

* A live environment where your objects live...

e ...and you, programmer, interact with them

* Creating a new class is a fine example
* You send a message to some class to make a subclass for it

* Adding methods can also be done with a message
* |In fact, this is how it is actually done
* Smalltalk provides visual tools to do that

What scares beginners in Smalltalk

...or Frequently Asked Questions:

e Can | build an executable file?
(*limited support by some commercial implementations only)

e Can | use my lovely Vim/Emacs*/Atom/VSCode/etc. to write code?
(*there is a text-based GNU Smalltalk where you can, but it is not “true”)

* Can | use Git, Github, SVN, HG, etc?
Git since late 2016. Prior attempts were not very successful (~201x)

e Can | use my OS’ GUI system (widgets, buttons, etc)?
in the open implementations. Emulated in commercial Smalltalks

* |s my code portable across Smalltalk implementations?
, While language is basically the same, Standard libraries may differ at API level

Smalltalk environment: Class browser

@ All Packages O Scoped View [-O Flat O Hier. | @ Inst. side O Class side | ® Methods O Vars | Class refs.
7 Comment X C ByteString %+ Inst. side method x r+a@n

String variableByteSubclass: #ByteString
instanceVariableNames: ''

classVarighlelapesi. NonAsciitan. -
= = e == pagkage=l' Collections-Strings-Base 'I

Class categories Class hierarchy Method Methods
-
(packages) : within a package categories within category
T I T
| | L—yq o i
I x -0 I 1 ByYteSl i e e ey —————————
e L L L L L L L L L L LN
: : » [£1Codelmport-Tests A 1 String ; » instance side A[] = asByteArray ":
I I [E1Codelmport-Traits |:\ 1 ByteString 1| » [Eextensions asKeyCombination [
| I » [1CodelmportCommandLineH Iy 1 Symbol 1 accessing asOctetString 1
1 I » 7 Collections-Abstract b1 ByteSymbol I comparing at: :
: : [£1 Collections-Abstract-Traits || T WideSymbol : converting at:put: i
i 1 » [Collections-Arithmetic |I f WideString I testing beginsWith: i
| I| [JCollections-Arithmetic-Tests :| | overrides byteAt: |
I I » E1Collections-Atomic | I byteAt:put: 1
: : [Collections-DoubleLinkedList :| : byteSize :
I | [ECollections-DoubleLinkedLis! |: I =convertFromSystemString i
1 I » ECollections-Native I | findSubstring:in:startingAt:matc |
| : » [2Collections-Sequenceable :| : fuelAccept: :
| ‘ i "
i - N i
|
|
|
|
|
|
|
1

[Slots

Smalltalk environment: Class browser

x —= 0O ByteString>>asByteArray - This is the
» [:1Codelmport-Tests | 1 Strin » instance side A ~ asByteArra b
E3 Codelm;)ort-Traits 1 BytegString » [extensions - austyComEZination place where
» [£1CodelmportCommandLineH |1 Symbol accessing « asOctetString you write code.
» [£]Collections-Abstract . ByteSymbol comparing - at: l
[i7 Collections-Abstract-Traits 1 WideSymbol converting « at:put: Have fun!
» []Collections-Arithmetic 1 WideString testing « beginsWith:
[i1 Collections-Arithmetic-Tests overrides « byteAt:
» [Collections-Atomic « byteAt:put:
[:1 Collections-DoubleLinkedList « byteSize
[z Collections-DoubleLinkedLis! convertFromSystemString
» []Collections-Native « findSubstring:in:startingAt:matc
» [21Collections-Sequenceable « fuelAccept:
" _ « hasWideCharacterFrom:to: v
© All Packages © Scoped View | @ Flat O Hier. | @ Inst. side O Class side | @ Methods O Vars | Class refs. Implementors Senders
7 Comment % © ByteString x lasByteArray %+ Inst. side method x OPAQAE «» _
asByteArray
| ba sz |
sz := self byteSize.

ba := ByteArray new: sz.
ba replaceFrom: 1 to: sz with: self startingAt: 1.
“ba

1/6[1] x @ converting [extension | F +L W

Smalltalk environment: Class browser

& emacs@DMITRYMA-MOBL

x -0 ByteString>>asByteArray v
» [Codelmport-Tests 1 String » instance side &[] « asByteArray &
[-1Codelmport-Traits 1 ByteString » [extensions « asKeyCombination
» [£1CodelmportCommandLineH 1 Symbol accessing « asOctetString
» [Collections-Abstract 1 ByteSymbol comparing ~ at:
[Collections-Abstract-Traits . WideSymbol converting « at:put:
» [2] Collections-Arithmetic 1 WideString testing « beginsWith:
[Collections-Arithmetic-Tests overrides - byteAt:
» [2] Collections-Atomic - byteAt:put:
[z Collections-DoubleLinkedList byteSize
[Collections-DoubleLinkedList convertFromSystemString
» []Collections-Native « findSubstring:in:startingAt:matc
» []Collections-Sequenceable « fuelAccept:
v « hasWideCharacterFrom:to: "
VS . @ All Packages O Scoped View | @ Flat O Hier. | @ Inst. side O Class side | @ Methods O Vars | Class refs. Implementors Senders
“ Comment ® C ByteString x lasByteArray % - Inst. side method x OPA «» -
asByteArray
| ba sz |
sz := self byteSize.
ba := ByteArray new: sz.
ba replaceFrom: 1 to: sz with: self startingAt: 1.
“ba
1/6[1] % # converting [extension [F +L W

OpenCV G-API, subgraph clustering routine Pharo 7.0, ByteString to ByteArray conversion routine

Text editor (“IDE”) vs. Smalltalk Class Browser

Text editor (or “IDE”) Smalltalk Class Browser
* Gives you a way to edit text * Gives you a way to edit class
* |tis up to you to map it to the And itis areal class, not an offline
object system visualization
e Edit & Compile & Test loop * Changes applied immediately
* You see the whole file * You see one method at time
* May be a white box! * And a list of other methods in class
* Details are noise * No details, just an interface

e You write code “as you wish” * Long methodsare painful to code

On programming in Smalltalk

* You have no “program”

* You always interact with a live, running system
* You change this live, running system

* Your changes to the system are incremental

* You modify classes (and so, objects) on the fly

e You can modify the system classes as well
e Extending standard classes is OK, but changing their existing code may is usually hazardous

* There’s no source file(s). “Sources” live with objects in the same space
e Actually, Classes are Objects which keep their sources with them
 When you modify a method source, the appropriate method is recompiled
* Method is a way to handle Message
* Methods are objects. Messages are objects, too. Everything is object, you know

More on programming in Smalltalk

* Method is your change & compile granularity
* Smalltalk’s VCS used this aspect to track changes, compared to text-based VCS

* In order to compile, your needed needs to be syntactically correct
* This is a very weak requirement given the simplicity of grammar

* |t means, that...
* You can send messages which are not handled or unknown
* You can refer to variables which don’t exist
* You can refer to classes which don’t exist

e So this is how true Smalltalkers write their code!

How Smalltalkers code: Today

x -0 Instance of Poly class did not understand #from: -
Proceed Abandon Debug Create
PolyTest testPolyCreation x = O Instance of Poly class did not understand #from: Bytecode GT =
i JestRunner PolyTest(TestCase) performTest + d - o > Throueh
Intel v v PolyTest(TestCase) runCase [self setUp. self performTest] | Stack Create pProceed (aRestart M Into A Over 3 Through -=
IntelDemo PolyTest BlockClosure ensure: PolyTest testPolyCreation &
PolyTest(TestCase) runCase PolyTest(TestCase) performTest
runCase [self setUp. self performTest |
x = 0O Test Runner v ensure:
. runCase
Unknown variabl: |ntel Bl TcstCaseAlTestCaseRll
1stance of Poly class did not understand #from: B de »
r -~ IntelDemo PolyTest g ytecode 1
»Proceed (- Restart ™ Into ¢ Over »» Through -=
Declare new tem d Ca % Into 7 Over = Through
x = O Instanceof Polydidnc = Declare new insta from: &
. t Dolt
Stack Define new trait evaluate
Poly po Cancel itor evaluate:andDo:
Poly class fro ' itor highlightEvaluateAndD A
PolyTest tes) Whereis? [F>Browse
-
Source ection
points: aCollection aCollection;
Epni=g:CRn ol e iont Run Selected = RunProfiled RunCoverage RunFailures =~ RunErrors = File out results I
e €
-1 Instance of Poly did not understand #points: -
Proceed | Abandon Debug Create
class from: ~
Test testPolyCreation
Variables Evaluator Test(TestCase) performTest
Type |Variable Walue ~ Test(TestCase) runCase [self setUp. self performTe. I .
kClosure ensure: le || value |
[self a Poly Test{TestCase) c Poly
; - . Test(TestCase runCase
[EELE aCollection an Array (3 items] ((0@0) (5@0) (0@5)) gy V=TT SRS Lo - - LY ction an Array [4 items] ((0@0) (10@0) (10@10) (0@10))
ry #IntelDemo

rlaceDnnl a Nirtinnan: [N itamc] 1

How Smalltalkers code: 1980

Welcome tumm-:.,rl Smalltalk—aﬁ sys'telrlnm l
d Time povw 1002045 am
Sl o ssage not understood: do: [B | e
- Smalllnteger{Object)>doesMotUnderstand:
4 . WriteStream{Stream) > nextPutall:
s hd Smalllntager{Tbject)»>doeshotlUnderstand: 155 1B e neIaleh S oty et
=] - . .
-1 ¢ - . X [1in Seti>do: o
jsahd WITeStrEamS g e — rPutal: E’;“S‘EQ;‘"E‘“”’”““’“‘“"”-‘""’““'
J=ohi [] in FinancialHis debug art] FinancialHistory>araport
= a i []in Set>kdo reportStream tab. again
) Smallinteger{Mumberi> > todo FEpRRYETHaIN ooy
seind - = £ ' nextPutallk (self tf "o 7 ptFor: reason) printString
= report3tream crl. paste
zehg = reportStream nextPutdll: ‘lncomes’, dl-:alt
seholdFinances inspect raportStream cr. printlt
self incomeSources do: Ll
[:source | reportStream tab, canoe
reportStream nextPutalspawnle.
reportStream tab. explain

raportStream

nextPutAll (self totalReceivedFram: source) printString
reportStream crl.
__treporiotrean coptant
““““““ Dictignary {‘rent’->700 e -k
seff "food ~>TB.53 th|sCome:
cashOnHand d reportStradn
incomes w
o SOUrCE

Smalltalkers code in debugger since the
early beginning

No wonder now why Test-Driven
Development originated in Smalltalk

How Smalltalkers work with objects

Playground

0
3

How Smalltalkers work with objects

x - 0O Playground G
Page aPoly x
Poly from: { Raw Meta

0 @o. | Variable | Value

10 @ 0. c self a Poly

10 @ 10. {1 points an Array [4 items] ((0@0) (10@0) (10@10) (0@10))

0 @ 10.
1.

"a Poly"

self

How Smalltalkers work with objects

x -0 Playground 7
Page a Poly -2 aPoint (10@0)) =
Poly from: { Raw Meta Raw Meta
0 eo. |Variable [value Variable [value
10 e o. o self aPoly o self (10@0)
10 e 10. ¥ {1 points an Array [4 items] ((0@0) (10@0) (10@10) (0@1(» I «x 10
0 e le. {1 self an Array [4 items] ((0@0) (10@0) (10@10) (0@1(» I y 0
}. » ©1 (0@0)
» © 2 (10@0)
» ©3 (10@10)
> © 4 (0@10)
Ila Po'LyII Il(lo@a)ll
self self

How Smalltalkers work with objects

x — 0O Playground]
Page a Poly -7 aPoint ((10@0)) 22 aSmalllnteger (10) x
Poly from: { Raw Meta Raw Meta Raw Integer Meta
0 eo. |Variable [value Variable [value |Variable | value
1o @ o. c self a Poly o self (10@0) 3 self 10
16 @ 10. ¥ {1 points an Array [4 items] ((0@0) (10¢ » X x 10
6 @ 10. {1 self an Array [4 items] ((0@0) (10¢ » Z y 0
1. » ©1 (0@0)
» 2 (1o@0)
» © 3 (10@10)
» © 4 (0@10)
Ila Polyll II(l@@@)II ”1@'\

self self self squared

Finally: Image-based persistence

* A physical form of your Smalltalk system is an image

* Image is a snapshot of object space where your object (and your
code) live

* Images are stored to disk (as 1-2 files)
* Images are the deployment model too

* Images capture the execution state, too (it is an object like
everything)

* You can save image at any time
* Even during the debugging session
* You can get back to your debugging point days (weeks, months, years) later

Callactions-Sagquend -==- R [

Collections-Text HE araa

Collactlons-Arraye comparing botrem

] Collactions=-Support ractangle fun Bt Tmm:

Graphic s =Pt vs s || Fec Langls tasting bottomCgnter
------------ truncation ang ot tombLaft

Graphics-Display Ol
] Graphics-Paths

1 Graphics-Symbols
Graphics-Yiaws
Graphics-Editors

transtarming
copying
printing

press printing

pottomfight
{Dtt-.;umﬁi;_:lll:
cenkgr
corner

class
medsage salector and argument names
‘comment stating purposa of massaga®

| tamporary variable names |
statemants

Live demo

Picture credit: Blue Book

What can we learn from Smalltalk

e “Simplicity is the ultimate sophistication”
* Look at your objects like never before
* Look at your classes like never before

* Look at your system like never before

* Fostering live, incremental development

* Fostering focus on interface rather than implementation
e ...Apply all this new knowledge in your daily work

Smalltalk today

Picture credit: pharo.org

Why we’re not using Smalltalk every day now?

* | do use, what about you?
* Probably you just didn’t know about it. Worth trying!

Why we’re not using Smalltalk every day now?

* Overcharged price for its initial hardware, low early adoption
e Xerox haven’t consider itself a “Desktop” company

* Bad marketing and management decisions during the “dawn” era
* Sun asked to license the language, got a high price tag. Now we have Java

* |Initial “low” performance (compared to native C, Pascal, etc)
* Thanks Moore’s law it is not a problem anymore

* Lack of accessible implementations till mid-199x
* Only commercial or experimental / compact Smalltalks were available

* Lack of the language standard (ANSI Draft of 1993)

* Incompatible implementations

 Totally different paradigm
* Own tools and development workflow, hardly compatible/reusable with “de facto”

Why we’re not using Smalltalk every day now?

As a result: Chicken and Egg problem

* No jobs

* There are Smalltalk jobs around the globe, but it is a tiny fraction compared to
the “mainstream” languages

* Engineers don’t learn Smalltalk since there’s no jobs

 Companies don’t go with Smalltalk since there’s no engineers
* If there is one and he leaves, where to find a replacement?

e At the same time...

* All above points make Smalltalk a “secret weapon” for the Smalltalk-oriented
teams

Smalltalk today: Implementations

Free / Open

_

(Squeak (\ /))
* Primary free Smalltalk in 90x-00x 00/
. Defmmg the modern workflow & tools =
* Driven by Alan Kay / Dan Ingalls
(Multi-purpose initially, mainly research now Squeak!)
(Pharo)
» Started as a Squeak fork (shares VM) ~
* Goal: clear license & focus on Web Phar@
: 7z
* Primary free Smalltalk today
* All current advances in Smalltalk happen there
_ PP J
(GNU Smalltalk

Most mature from text-oriented Smalltalks

Many Smalltalkers are unaware of it

Modest list of supported packages

Quite alive 10 years ago, last released 7 years ago

Commercial
(Cincom VisualWorks = — N
¢ The most advanced commercial Smalltalk for decades H ..o
* Based on the original Smalltalk-80 code as Squeak @
* Mainly serves legacy systems now o 6
\° Focus on Desktop and Web @
4)
Instantiations Visual Age Smalltalk ’
* Former IBM Visual Age Smalltalk instantiations
* Gains new momentum now /VK Smalltalk
* Focuson loT and Embedded
. J
4)
GemStone/S ™
» Scalable distributed fail-safe object space (UEMSTONE
« A continuation of tech acquired by VMWare e
* A OODB backend to many commercial Smalltalk deployments
_ J

Smalltalk today: Notable deployments

&4 Cincom.

Overview Goal:

* Leverage JP Morgan's success, which is
based on the time-to-market of new
products.

* Scale up products in the market to gain
significant market share.

Challenge: Provide a development
environment that:

* Accommodates the highly complex
nature of JP Morgan's derivative
products.

* Provides unparalleled productivity to
stay ahead of the competition.

* Has the scalability to be deployed to
support extremely high trading
volumes.

Solution: Cincom Smalltalk

Results:

* The Smalltalk-developed Kapital system
has enabled JP Morgan to be the
market leader.

* JP Morgan estimates that Smalltalk is
three times more productive than other
languages, which allows them to
consistently beat the competition.

* Revenues from the business that Kapital
supports contribute an extraordinary
percentage of JP Morgan's total
revenues.

JP Morgan Derives
Clear Benefits from
Cincom Smalltalk™

IN SUCCESS

JP Morgan

JP Morgan Chase is a leading financial services firm serving capital
markets throughout the world. With assets of $1.1 trillion and a
component of the Dow Jones Industrial Average, capabilities include

investment banking, research, private equities, investment management,

private banking and treasury and security services.

As one of the world's leading investment banks, it has extensive
relationships with corporations, financial institutions, governments and
institutional investors worldwide. The firm provides a full range of
investment-banking and commercial-banking products and services,
including advising on corporate strategy and structure, raising capital in
equity and debt markets, sophisticated risk management and market-
making in cash securities and derivative instruments in all major capital
markets. It also commits the firm’s own capital to proprietary investing
and trading activities.

One of the key elements of JP Morgan’s success is based on one of its
differentiators, the time-to-market of new products. Supporting this is a
commitment to use information technology to provide this competitive
advantage.

L T, VT POy Ry Sy A—— | SN TATE S b a4 Crm o= [+ -
VWith such a high proauctivity factor that Smalltalk
. . . | ,
gives us, reaction times to market changes have
p

enabled us to beat most of our competitors.

P Maraan Chaze ic a leadina financial services firm servinag canital

Source: Cincom

Overview Goal:

* Leverage JP Morgan's success, which is based
on the time-to-market of new products.

* Scale up products in the market to gain
significant market share.

Challenge:

Provide a development environment that:

* Accommodates the highly complex nature of
JP Morgan's derivative products.

* Provides unparalleled productivity to stay
ahead of the competition.

* Has the scalability to be deployed to support
extremely high trading volumes.

Solution: Cincom Smalltalk

Results:

* The Smalltalk-developed Kapital system has
enabled JP Morgan to be the market leader.

= JP Morgan estimates that Smalltalk is three
times more productive than other languages,
which allows them to consistently beat the
competition.

* Revenues from the business that Kapital
supports contribute an extraordinary
percentage of JP Morgan’s total revenues.

TECHNICAL SIDEBAR

USER: Orient Overseas Container Line Ltd.
(00OCL)

PARENT COMPANY: Orient Overseas
(International) Ltd.

DATA MANAGEMENT SOFTWARE:
GemStone/S, from GemStone Systems, Inc.

FRONT END DEVELOPMENT SOFTWARE:
Cincom Smalitalk VisualWorks

HARDWARE: HP and Sun servers
OPERATING SYSTEMS: HP-UX and Solaris

ARCHIVAL DATABASE: Sybase

INTEGRATED THIRD-PARTY APPLICATIONS:

mySAP ERP Financials

SYSTEM LOAD:
* 2700 end users
* 150 offices worldwide
* 1600 concurrent users at peak times
* 4000-5000 new shipment bookings per day
* 10,000 data updates per day
* 50-70 TPS for data reads/searches/updates
* 4-5 commits per second
* 1.9 billion objects persisted in GemStone
database

Smalltalk today: Notable deployments

Source: Cincom

GemStone and Orient Overseas Container Lines:

A Shipping Industry Case Study

1.5 billion data objects.

That's a lot of information to keep track of in
an online system; information that is shared
and accessed by more than 5,800 people in
150 offices around the globe. It is informa-
tion that affects departments as diverse as
Financial Accounting, Customer Service,
Vendor Management, Legal, and Sales. It is
information that changes and requires atten-
tion from minute to minute, directly affecting
revenue opportunities and profitability of
operations. Welcome to the world of Orient
Overseas Container Lines Ltd. (OOCL).

Hong Kong-based OOCL is an International

Container Transport and Logistics service

customer service. The Integrated Regional
Information System, known as IRIS-2, coordi-
nates all facets of OOCL's core business from
the initial order placement to moving goods

and reconciling accounting.

OOCL had impressive goals when creating
IRIS-2. The software had to be able to coordi-
nate information used by employees and
business applications across the entire compa-
ny. Tracking container movements and costs
was necessary in order to make operations
more efficient. Enabling rapid customer
response was critical in growing revenue
opportunities and winning business from

competitors.

Smalltalk today: Notable deployments

Source: Cincom, Lam RC

A

Lam

RESEARCH

Goal:

Implement a feature-rich
development framework specifically
for semiconductor-equipment control.

Challenges:

The framework must reduce the

overall cost of control system

development and field support by:

¢ Supporting rapid prototyping for
shorter time-to-market

* Being highly reusable and
maintainable, increasing
development-team productivity

* Providing excellent configuration
control for support of multiple
product versions

Solution:
ControlWORKS, built on
Cincom® VisualWorks®

Key Results:

* Systems implemented in four to
eight months, not two to three years

¢ Time-to-market cut from two to
three years to six to nine months

* The control organization reduced
by up to 90%

* Maintenance costs cut due to
built-in standard processes

4 Cincom.

Profile in Success: Rudolph Technologies

Rudolph Technologies
Helps Semiconductor
Customers Reach Market
Faster with Smalltalk-Based
ControlWORKS

Smalltalk today: Notable deployments

Smalltalk in Thales Brest @

Source: ESUG, THALES -

A story of twenty years:

B 1989-1997: Sensor software development

m MMI development on real time operating system (VRTX), C (TNI) code generator

m MMI development for embedded workstation, Static typing, C++ (Thales) code generator
m Automatic test workbench (IEEE488, VxWorks)

1996-2000: Training centers

1996-2003: MMI workstation for Maritime patrol aircraft demonstrator

m 2002-2009:

m System Modeling and Mockup
s Component testing

Reference - date

(2) Aéronautique T H /0\ L E S

https://www.youtube.com/watch?v=0q1RSDn2P5Y

https://www.youtube.com/watch?v=Oq1RSDn2P5Y

Smalltalk teday: Notable deployments

Motion Control
Looks Sensing
Sound Operators

Pen Variables

Make a wariable
Delete a variable‘ set frequency . lto E

set 7inde>< ‘ to E

[fd frequency
Fd findex delete mOf frequencies

[Ed “this_input forever
i " index = length of input

set frequency | to E

set Virndex ito [0
change frequency [py N

change index | by
3

show wariable frequency
set Vthistinput jto item |index of Input

hide wvariable frequency g :
. change _ffequency _‘by this_input

Mt
m E‘i_f frequencies | contains frequency -
Delete a list f say frequency
r— New sprite: {,:/ :? 7,}

[#d frequencies stop 'SCFiPt

. Lelse
E input : .
add frequency to freguencies
A

add to frequencies

delete BR4 of frequencies

Smalltalk teday: Notable deployments

dabble [1f

OSCON PLANNER ff Home All Views Import Data Sharing Help

Session +7 T2

+© ADD NEW ENTRY ON:

“today (Aca)
6 Entries
FILTER 8Y CATEGORY:
Time
2 Session % | Al Day
9 am
FILTER BY VALUE:
———— ywords ® 10 am
perl
22 Room is x 11am
Portland
|12 pm
a (Add ﬁkcr)
What is a filter? 1pm

Tip: Specify a home
view 2 pm

You can specify that any

3 pm
view is the "Home" view of
an application by clicking the
M view name link and 4 pm

checking "Use as Home" box.

Hide help

SUN. MON.
JULY 6 JULY 7
Writing Peri

Extensions

inC

%
When reconfigured (216 entries affected) 2
Portland Perl (Modified: Save / Revert / Save As)

What is this?

< July 6, 2003 - July 12, 2003

TUL WED,
JULY 8 JuLy 9

OSCON PLANNER

Session +72 7

fi Home Import Data Sharing Help

Unsaved View What is this?

+© New Entry
39 Entries Ae—
FILTER BY CATEGORY: ©

- Columbia

@ e ! ! intro to Perl Testing

FILTER BY VALUE:

Keywords
perl

| Eugene
! A Day of Extreme Programming

| Advanced D8I

(Add filter)

| Ruby for Perl rammers
What Is 2 filter? o e

Tip: Save your view

If you want to be able to

| g
Oregon Ballroom
| States of the Union

back to this view lat B
come back to this view later, f
click the [view name link C “"""“"‘:"I';:'r"" of Large
to save It with a name — Sysaect
. extproc_perl: Embedding Perl in
Hide help Oracle

! Industrial Strength Perl - Failing
Predictably and Dealing With it

! One Perl to Bind Them All

| Writing about Perl - Observations
and Guidelines

I e o |

Settings

2

¥ Add Cotama
Presenter —
Room Name Summary
Columbia Shane Type: Tutorial, Description: Done well, unit testing can
Warden Improve code quality and increase...
Eugene Marty Pauley Type: Tutorial, Description: This one-day tutorial
provides a hands -on introduction to €xt...
Eugene Tim Bunce Type: Tutorial, Description: Learn how the DBI works
and how to get the best out of it, in...
Eugene Phil Tomson Type: Session, Description: It's often valuable to learn
A new programming language becaus...
Oregon Type: Plenary, Description: Larry Wall's annual address
Ballroom on what's new in the world of Perl...
Portland Andy Lester Type: Session, Description: Perl's testing wols have
been tradi y aimed at dul
Portand Jeff Horwitz Type: Session, Description: extproc_per! extends an
Oracle database by allowing stored pro..,
Portland Dave Rolsky Type: Session, Description: It's often better to give up
in a controlled manner than to fo...
Pordand Merijn Type: Session, Description: Perl is used extensively at
Broeren Morgan Stanley to intensively mana...
Portand Randal L. Type: Session, Description: Randal and co-conspirator
Schwartz Phoenix offer an informative (and hu...

* “Secret weapon” success story
* Successful project developed rapidly (months) and ran by

just a few people

Acquired by Twitter in 2010, closed in 2011

Smalltalk today: Community S FAST

t Types izedType "/
» FAMIX.BehaviouralEntity attributes Attribute */

SMALLTALK
N
x = 0 Moose Meta Browser © Q-
tities 24Relations 48 Properties
R
E ¥ FAMIX.NamedEntity name type

NamedEntif e
[I] c 0 “ F E R E “ c ¥ FAMIX ContainerEntity (T !

> FAMIX.ScopingEntity i Type ity
v FAMIX.Type [FAMEE| belongsTo ContainerEntity / F
FAMIX.AnnotationType clientTypes Type*/
> FAMIX.Class comments Comment */
FAMICEnum container ContainerEntity

declaredSourcelanguage [E140 Sourcelanguage

FAMIX ParameterType ()
definedAnnotationTypes AnnotationType * /

iy st functions function*
. 3 incomingReferences ([ENEIEELY Reference*
FAMIXTypeAlias instances Instance* /

> FAMIX LeafEntity methods Method * /
TP .

> FILEAbstractFile ({3

ja toolkit

i offidiitain

Resources on Smalltalk

Picture credit: Blue Book

Classic Smalltalk Books

SMALLTALK-80

THE LANGUAGE AND ITS IMPLEMENTATION

Adele Goldberg and David Robson

SMALLTALK- 80

SMALL'MLK— 80

THE INTERACTIVE PROGRAMMING ENVIRONMENT

Adele Goldberg and David Robson

Adele Goldberg

SMALLTALK-80

BITS OF HISTORY, WORDS OF ADVICE

Glenn Krasner

Practical Smalltalk Books

SMALLIALK

BEST PRACTICE
A'I'I‘ERNS

KENT BECK

THE

DESIGN PATTERNS

SMALLTALK COMPANION

Stéphane Ducasse
" Dmitri Zagidulin
Nicolai Hess
Dimitris Chloupis

=

Other resources

* Free online books
* http://stephane.ducasse.free.fr/FreeBooks.html

* The Evolution of Smalltalk: by Dan Ingalls
* https://dl.acm.org/doi/pdf/10.1145/3386335

 Why Smalltalk failed: Opinion by Gilad Bracha
* https://gbracha.blogspot.com/2020/05/bits-of-history-words-of-advice.html

http://stephane.ducasse.free.fr/FreeBooks.html
https://dl.acm.org/doi/pdf/10.1145/3386335
https://gbracha.blogspot.com/2020/05/bits-of-history-words-of-advice.html

Other resources

e Early Smalltalk TV cut (early 1980s)
* https://www.youtube.com/watch?v=AuXCc7WSczM

* Lecture on OOP by Dan Ingalls (1989)
e https://www.youtube.com/watch?v=A09W930xQ7U

* Smalltalk-76 demo on historic Xerox Alto by Dan Ingalls (2017)
* https://www.youtube.com/watch?v=NgKyHEJe9 w

https://www.youtube.com/watch?v=AuXCc7WSczM
https://www.youtube.com/watch?v=Ao9W93OxQ7U
https://www.youtube.com/watch?v=NqKyHEJe9_w

Thanks!

Picture credit: Blue Book

£\

ri‘d

