
Picture credit © BYTE Magazine, 1981-08

Contents

• Intro

• Smalltalk’s place in history

• Understanding the language

• Understanding the environment

• Live demo

• Smalltalk today

• Resources on Smalltalk

Intro

“I invented the term ‘object
oriented’, and C++ was not
what I had in mind”

- Dr. Alan Kay

Smalltalk’s place in history

Picture credit: Blue Book

Smalltalk’s place in history

Big Bang
1969

Xerox Alto
1973

Smalltalk-80
1980

Xerox Star
1981

Smalltalk-76
1976

Steve J. @
Xerox PARC

1979

Apple
Lisa
1983

Apple
Macintosh

1984

Smalltalk’s place in history, continued

Smalltalk-80
1980

Apple
Objective C

1984

NeXT
OpenStep

1994

Strongtalk
Gilad Bracha

1993

Self: JIT
David Ungar

1987

Java
HotSpot VM

Lark Bak
~1997

Java
Language

Spec
(Bracha)

JVM
Spec

(Bracha)

Google
V8 JS Engine

Lars Bak

Google
Dart

Bracha/Bak

IBM
VisualAge

1993

Eclipse
Foundation

2001

Apple
Cocoa
1996

Smalltalk’s place in history, continued again

Smalltalk-80
1980

SUnit
Kent Beck

1989

XP
Kent Beck

1996

TDD
Kent Beck

1999

Agile
Manifesto
Beck et al

2001

Refactoring
Browser

John Brant
1998

“Refactoring”
Fowler, Brant

1999
OOPSLA

Ralph
Johnson

199x

GoF
(Johnson)

1994

Smalltalk-79
1979

MVC
Trygve

Reenskaug
1979

Smalltalk history in one slide

• ~1969: Xerox sets a goal to envision a “workplace of the future”

• 1970: Alan Kay joins Xerox Palo Alto Research Parc (PARC)

• 1972: “Dynabook: a personal computer for children of all ages”

• 1972: Dan Ingalls joins Xerox PARC

• 1972-80: Smalltalk-72, -74, -76, -79

• 1980-83: Smalltalk-80 (Release)

• 1983-..: Commercial Smalltalk packages

• 1996: Sun releases Java

• 1996-..: Decline in market share, focus on FOSS

• 199x – 200x: Squeak (led by the original authors), 200x – now: Pharo (fork)

• 2003: ACM Turing Award to Alan Kay for pioneering OOP & “fundamental contributions
to personal computing”

Understanding the language

Picture credit: Blue Book

Quiz: how complex your programming language is?

C
If()

If(){}else

If(){}else if(){}

for(;;)
while()

do{}while()

struct{}

typedef

union{}

* (arith)

* (ptr)& (bw) & (addr)

?:

(*fcn)

++
class

virtual

template<>

inheritance

multiple inheritance RAII

SFINAE

rvalue

ADL

try/catch

throw

casts

Smalltalk concepts

1. Everything is Object

2. Objects communicate only by sending each other Messages

Smalltalk concepts: Objects (Literals)

123 a SmallInteger

16rff a SmallInteger (255)

‘Hello world’ a String

#HelloWorld a Symbol

#(1 2 3) an Array

Smalltalk concepts: Messages

2 squared => 4 Unary message

‘hello’, ‘world’ => ‘helloworld’ Binary message

2 raisedTo: 3 => 8 Keyword message

Transcript Cascading

show: 'hello’; - keyword

show: 'world’; - keyword

cr. - unary

Smalltalk concepts: Messages – Quiz!

2 + 2 * 2

6 8
The correct answer is 8. There’s no arithmetic precedence for

operators (as there is no operators except := and ^).
Message precedence order is defined as unary > binary > keyword.

2 gets #+: 2, results in 4, 4 gets #*: 2, results in 8.

Smalltalk concepts: Variables & Block closures

[:x | x + 1] => a BlockClosure (object)

| a b | => declare two variables

a := 3. => assignment (literal)

b := [:x | x + 1]. => assignment (lambda)

b value: a. => Send keyword message value:

4

Smalltalk concepts: That’s it!

• Now you know the syntax.

• But… What about…
• Conditionals?..

• Loops?..

• Classes?..

• Overloading?..

• Exception handling?..

• …There’s no special syntax for those.

• …Everything is an object, and objects are sending messages!

Smalltalk concepts: Conditionals

(a > 2)

ifTrue: [a + 1]

ifFalse: [a – 1]

1. a #> 2 -> a Boolean (true or false)
1. true: a True

2. false: a False

2. a Boolean #ifTrue:IfFalse
1. True #ifTrue:ifFalse, OR

2. False #ifTrue:ifFalse

3. True class: evaluates true block

4. False class: evaluates false block

5. Achievement unlocked: “IF without IF”

Boolean

True False

#ifTrue:ifFalse:

#ifTrue:ifFalse: #ifTrue:ifFalse:

Smalltalk concepts: Collections

| things |

things := OrderedCollection new.

things add: 1.

things add: 2.

things add: ‘Smalltalk – sila!’.

Unary message

Keyword message

Class is the receiver
Everything is object!

Smalltalk concepts: Collections

things do: [:each | Transcript show: each; cr]

Smalltalk concepts: Collections

things collect: [:each | each class]

Smalltalk concepts: loops (not)

10 timesRepeat: [Transcript show: ‘Cool isnt it?’; space].

Transcript cr.

1 to: 10 do: [:i | Transcript show: i; space].

Transcript cr.

(1 to: 10) do: [:i | Transcript show: i squared; space].

Integer >> timesRepeat: aBlock

Integer >> to: aNumber do: aBlock

Integer >> to: aNumber. Creates Interval

Interval >> do: aBlock

Smalltalk concepts: Classes

Object subclass: #Point

instanceVariableNames: ‘x y’

classVariableNames: ‘’

package: ‘Kernel-BasicObjects’

Number subclass: #Fraction

instanceVariableNames: ‘numerator
denominator’

classVariableNames: ‘’

package: ‘Kernel-Numbers'

Inheritance (subclassing) is not a declaration.
It is a message. A message which is sent.

Sent in the runtime.

Smalltalk class hierarchy example

Picture credit: Pharo By Example

Understanding the environment

Picture credit: Blue Book

Smalltalk as an environment

• Smalltalk is not only a language, it is also an environment

• Smalltalk is more an environment than a language

• A live environment where your objects live…

• …and you, programmer, interact with them

• Creating a new class is a fine example
• You send a message to some class to make a subclass for it

• Adding methods can also be done with a message
• In fact, this is how it is actually done

• Smalltalk provides visual tools to do that

What scares beginners in Smalltalk

…or Frequently Asked Questions:

• Can I build an executable file?
• NO* (*limited support by some commercial implementations only)

• Can I use my lovely Vim/Emacs*/Atom/VSCode/etc. to write code?
• NO* (*there is a text-based GNU Smalltalk where you can, but it is not “true”)

• Can I use Git, Github, SVN, HG, etc?
• YES, Git since late 2016. Prior attempts were not very successful (~201x)

• Can I use my OS’ GUI system (widgets, buttons, etc)?
• Still NO in the open implementations. Emulated in commercial Smalltalks

• Is my code portable across Smalltalk implementations?
• NO, while language is basically the same, Standard libraries may differ at API level

Smalltalk environment: Class browser

Class categories
(packages)

Class hierarchy
within a package

Method
categories

Methods
within category

Smalltalk environment: Class browser

This is the
place where

you write code.
Have fun!

Smalltalk environment: Class browser

OpenCV G-API, subgraph clustering routine Pharo 7.0, ByteString to ByteArray conversion routine

vs.

Text editor (“IDE”) vs. Smalltalk Class Browser

Text editor (or “IDE”)

• Gives you a way to edit text
• It is up to you to map it to the

object system

• Edit & Compile & Test loop

• You see the whole file
• May be a white box!

• Details are noise

• You write code “as you wish”

Smalltalk Class Browser

• Gives you a way to edit class
• And it is a real class, not an offline

visualization

• Changes applied immediately

• You see one method at time
• And a list of other methods in class

• No details, just an interface

• Long methods are painful to code

On programming in Smalltalk

• You have no “program”

• You always interact with a live, running system

• You change this live, running system

• Your changes to the system are incremental

• You modify classes (and so, objects) on the fly

• You can modify the system classes as well
• Extending standard classes is OK, but changing their existing code may is usually hazardous

• There’s no source file(s). “Sources” live with objects in the same space
• Actually, Classes are Objects which keep their sources with them
• When you modify a method source, the appropriate method is recompiled
• Method is a way to handle Message
• Methods are objects. Messages are objects, too. Everything is object, you know

More on programming in Smalltalk

• Method is your change & compile granularity
• Smalltalk’s VCS used this aspect to track changes, compared to text-based VCS

• In order to compile, your needed needs to be syntactically correct
• This is a very weak requirement given the simplicity of grammar

• It means, that…
• You can send messages which are not handled or unknown

• You can refer to variables which don’t exist

• You can refer to classes which don’t exist

• So this is how true Smalltalkers write their code!

How Smalltalkers code: Today

How Smalltalkers code: 1980

No wonder now why Test-Driven
Development originated in Smalltalk

Smalltalkers code in debugger since the
early beginning

How Smalltalkers work with objects

How Smalltalkers work with objects

How Smalltalkers work with objects

How Smalltalkers work with objects

Finally: Image-based persistence

• A physical form of your Smalltalk system is an image

• Image is a snapshot of object space where your object (and your
code) live

• Images are stored to disk (as 1-2 files)

• Images are the deployment model too

• Images capture the execution state, too (it is an object like
everything)

• You can save image at any time
• Even during the debugging session
• You can get back to your debugging point days (weeks, months, years) later

Live demo

Picture credit: Blue Book

What can we learn from Smalltalk

• “Simplicity is the ultimate sophistication”

• Look at your objects like never before

• Look at your classes like never before

• Look at your system like never before

• Fostering live, incremental development

• Fostering focus on interface rather than implementation

• …Apply all this new knowledge in your daily work

Smalltalk today

Picture credit: pharo.org

Why we’re not using Smalltalk every day now?

• I do use, what about you?

• Probably you just didn’t know about it. Worth trying!

Why we’re not using Smalltalk every day now?

• Overcharged price for its initial hardware, low early adoption
• Xerox haven’t consider itself a “Desktop” company

• Bad marketing and management decisions during the “dawn” era
• Sun asked to license the language, got a high price tag. Now we have Java

• Initial “low” performance (compared to native C, Pascal, etc)
• Thanks Moore’s law it is not a problem anymore

• Lack of accessible implementations till mid-199x
• Only commercial or experimental / compact Smalltalks were available

• Lack of the language standard (ANSI Draft of 1993)
• Incompatible implementations

• Totally different paradigm
• Own tools and development workflow, hardly compatible/reusable with “de facto”

Why we’re not using Smalltalk every day now?

As a result: Chicken and Egg problem

• No jobs
• There are Smalltalk jobs around the globe, but it is a tiny fraction compared to

the “mainstream” languages

• Engineers don’t learn Smalltalk since there’s no jobs

• Companies don’t go with Smalltalk since there’s no engineers
• If there is one and he leaves, where to find a replacement?

• At the same time…
• All above points make Smalltalk a “secret weapon” for the Smalltalk-oriented

teams

Smalltalk today: Implementations
Free / Open Commercial

Squeak
• Primary free Smalltalk in 90x-00x
• Defining the modern workflow & tools
• Driven by Alan Kay / Dan Ingalls
• Multi-purpose initially, mainly research now

Pharo
• Started as a Squeak fork (shares VM)
• Goal: clear license & focus on Web
• Primary free Smalltalk today
• All current advances in Smalltalk happen there

GNU Smalltalk
• Most mature from text-oriented Smalltalks
• Many Smalltalkers are unaware of it
• Modest list of supported packages
• Quite alive 10 years ago, last released 7 years ago

Cincom VisualWorks
• The most advanced commercial Smalltalk for decades
• Based on the original Smalltalk-80 code as Squeak
• Mainly serves legacy systems now
• Focus on Desktop and Web

Instantiations Visual Age Smalltalk
• Former IBM Visual Age Smalltalk
• Gains new momentum now
• Focus on IoT and Embedded

GemStone/S
• Scalable distributed fail-safe object space
• A continuation of tech acquired by VMWare
• A OODB backend to many commercial Smalltalk deployments

Smalltalk today: Notable deployments

Source: Cincom

Smalltalk today: Notable deployments

Source: Cincom

Smalltalk today: Notable deployments

Source: Cincom, Lam RC

Smalltalk today: Notable deployments

Source: ESUG, THALES

https://www.youtube.com/watch?v=Oq1RSDn2P5Y

https://www.youtube.com/watch?v=Oq1RSDn2P5Y

Smalltalk today: Notable deployments

Smalltalk today: Notable deployments

• “Secret weapon” success story
• Successful project developed rapidly (months) and ran by

just a few people
• Acquired by Twitter in 2010, closed in 2011

Smalltalk today: Community

MOOSE

Resources on Smalltalk

Picture credit: Blue Book

Classic Smalltalk Books

Practical Smalltalk Books

Other resources

• Free online books
• http://stephane.ducasse.free.fr/FreeBooks.html

• The Evolution of Smalltalk: by Dan Ingalls
• https://dl.acm.org/doi/pdf/10.1145/3386335

• Why Smalltalk failed: Opinion by Gilad Bracha
• https://gbracha.blogspot.com/2020/05/bits-of-history-words-of-advice.html

http://stephane.ducasse.free.fr/FreeBooks.html
https://dl.acm.org/doi/pdf/10.1145/3386335
https://gbracha.blogspot.com/2020/05/bits-of-history-words-of-advice.html

Other resources

• Early Smalltalk TV cut (early 1980s)
• https://www.youtube.com/watch?v=AuXCc7WSczM

• Lecture on OOP by Dan Ingalls (1989)
• https://www.youtube.com/watch?v=Ao9W93OxQ7U

• Smalltalk-76 demo on historic Xerox Alto by Dan Ingalls (2017)
• https://www.youtube.com/watch?v=NqKyHEJe9_w

https://www.youtube.com/watch?v=AuXCc7WSczM
https://www.youtube.com/watch?v=Ao9W93OxQ7U
https://www.youtube.com/watch?v=NqKyHEJe9_w

Thanks!

Picture credit: Blue Book

